Eco 387L (24): Mathematical Economics Fall 2006
Keys to Midterm 2

The total number of points is 100.

Question 1. (30 points) We follow the procedure: (i) setup the Lagrangean;
(ii) find the candidates with the FOC; and (iii) pick the candidate(s) that max-
imize the objective function. The Lagrangean is

L(z,y,A1,A2,A3) = 2Inz+5lny
+M(6—z—1y)
+22 (10 — z — 2y)
+A3(9—2z —y).
The FOC’s are
L$:2/.’L‘—)\1—)\2—2)\3:0
Ly:5/y7>\172)\27)\3:0
Ly=6—2—y>0; \1>0;, q(6—2—y)=0
Ly,=10—2—2y>0; \2>0; A2(10—2z—2y)=0
Ly, =9-2x—y>0; \3>0; \3(9—2z—y)=0.
First note that we cannot have 3 inequality constraints bind at the same time
(Why?). In addition, at least one of the constraints binds (Why?). Thus, in
principle, there are 6 cases to look at: (1) only A; > 0; (2) only Ay > 0; (3) only
Az > 0; (4) only A1, Ay > 0; (5) only A1, A3 > 0; and (6) only A2, A3 > 0. For each
case, it is straightforward to find the candidate(s) (z;, y;) and the corresponding

objective value denoted by V; for i = 1,...,6. Here are the results:
C(1): ® =12/7; y =30/7; = outside the constraint set.

C(2): =20/7; y =25/7; = outside the constraint set.
C(3): ®=9/7; y=45/7; = outside the constraint set.
C): z=2; y=4; V4 =8.32.

CB): z=3; y=3; V5 =7.69.

C(6):  =8/3; y =11/3; = outside the constraint set.

Finally, the solution is (z = 2;y = 4); the optimal value is 8.32.

Question 2. (30 points) We also follow the “cookbook” procedure. The
Lagrangean is

Lz, y, Ay p0) = (2 +1) (y+1) + AT —px — qu) + 37 + poy. (1)

The FOC’s are
Ly=y+1)—-Ap+p =0 (2)
L

y=@+1) =M+ =0 3)



Ly=T-pr—qy=0; A\>0; A\(I—pz—qy)=0 (4)

Ly, =2>0; g >0; pyz =0 (5)

Ly, =y =05 py = 0; poy = 0. (6)

It is straightforward to see that A > 0; pz 4+ qy = I;  and y cannot both be
zero. Thus, at the optimal point(s), it is either (z = 0,y > 0), or (z > 0,y = 0),
or (x > 0,y > 0). The final solutions depend on the parameters p,q, and I,

which are all strictly positive. There are 3 cases regarding p and ¢: (i) p = g;
(ii) p > ¢; and (iii) g > p.

Case 1: p = ¢. First, consider (x = 0,y > 0). The candidate is (z = 0,y =
I/q) and the objective value is (I /g + 1). Second, consider (z > 0,y > 0). The
candidate is (z = I/(29),y = I/(2q)) and the objective value is (I/(2q) + 1)2.
The latter candidate always yields a strictly higher value than the former. Note
that there’s no need to consider (x > 0,y = 0) (Why?). Thus, for p = g,

(" =1/(2q),y" = 1/(2q)).

Case 2: p > q. First, consider (x = 0,y > 0). The candidate is (z = 0,y =
1/q) and the objective value is (I/q + 1). Second, consider (z > 0,y = 0). The
candidate is (x = I /p,y = 0) and the objective value is (I /p+1). Third, consider
(x > 0,y > 0). The candidate is (x = (I —p+q)/(2p),y = I +p — q)/(2q9))
and the objective value is (I + p + ¢)?/(4pq).

As p > ¢, the second candidate is dominated by the first candidate. That
means we only need to compare the first and the third. Note that the third
candidate violates > 0 for I < p — q. Thus for I < p — ¢, the only candidate
left is the first, i.e. (x = 0,y = I/q). For I > p — ¢, the third candidate
dominates the first because

(I+p+q)°/(4pq) > (I/q+1)
= P+ p>+¢>+2Ip+2Iq+ 2pg > 4Ip + 4pq
— (I’—1Ip+1q)—(Ip—p°+pg)+ (Ig—pg+q°) >0
= II-p+q)—pI—p+q+qlI—-p+q)>0
— (I-p+q)?*>0.

In combination, the results for p > ¢ are
ifI<p—q: 2*=0,y"=1I/q
fI>p—q: a*=U-p+q/(2p), y"=U+p—q)/(20).
Case 3: p < q. By the same token, the results are

fI<q-—p: a*=1I/p, y*=0
ifI>qg—p: a*=UI-p+q)/@2p), v*=UT+p—-q)/(29).



Question 3. (20 points) Construct the function

2 _ .3 4
F(z,x,m:[x Yt }

z+y?—23

Note that F'is a C* function defined on the open set R®. Consider some (z,, )
s.t. F(z,z,y) = [1 1. To have x and y as functions in the neighborhood U C R
of z, we need D, ,F(z,x,y) to be invertible. Specifically

2r —3y?
Dx,yF(Z,m,y) = [ 1 25 ] .

The condition is 4xy + 3y? # 0, ie. y # 0 and x/y # —3/4. By the Im-
plicit Function Theorem, x and y can be solved for as functions of z in the
neighborhood U. Let

423
DZF(Z,{E,y) = |: _322 :| .
Finally, the derivatives are
e -1
|: % :| = [D%QF(%J:?ZJ)} DZF(z,z,y).
0z

Question 4. (20 points) Consider a C? function u: R, — R s.t.
u(z) = ()
i=1

where v; : Ryy — R, ¢ = 1,...,n. WTS: u is concave iff v/ < 0 Vi. By
Theorem 7.10 (Sundaram), u is concave iff D?u(z) is NSD Vz € R . Given
some x € R" |, the Hessian of u is the diagonal matrix

v (1) 0 0
D?u(z) = 0 vz (22) 0
0 0 e V()

nxn

In addition, we check for NSD by Theorem 1.63 (Sundaram): (—1)*|A7| >
0 Vk, 7w, where A}, denotes a squared matrix of order k retrieved from a permu-
tation of D?u(z).

Part 1 (=) WTS: u is concave = v/ < 0 Vi. As u is concave, (—1)!|AT| >
0 Vmr, which means v} < 0 Vi.

Part 2 (<) WTS: v} < 0 Vi = u is concave. As v < 0 Vi, it is straight-
forward to verify that (—1)¥|AT| > 0 Vk,n, which means u is concave. This
completes the proof.



