
Eco 387L (24): Mathematical Economics Fall 2006
Keys to Midterm 2

The total number of points is 100.

Question 1. (30 points) We follow the procedure: (i) setup the Lagrangean;
(ii) �nd the candidates with the FOC; and (iii) pick the candidate(s) that max-
imize the objective function. The Lagrangean is

L (x; y; �1; �2; �3) = 2 lnx+ 5 ln y

+�1 (6� x� y)
+�2 (10� x� 2y)
+�3 (9� 2x� y) :

The FOC�s are
Lx = 2=x� �1 � �2 � 2�3 = 0

Ly = 5=y � �1 � 2�2 � �3 = 0

L�1 = 6� x� y � 0; �1 � 0; �1 (6� x� y) = 0

L�2 = 10� x� 2y � 0; �2 � 0; �2 (10� x� 2y) = 0

L�3 = 9� 2x� y � 0; �3 � 0; �3 (9� 2x� y) = 0:

First note that we cannot have 3 inequality constraints bind at the same time
(Why?). In addition, at least one of the constraints binds (Why?). Thus, in
principle, there are 6 cases to look at: (1) only �1 > 0; (2) only �2 > 0; (3) only
�3 > 0; (4) only �1; �2 > 0; (5) only �1; �3 > 0; and (6) only �2; �3 > 0. For each
case, it is straightforward to �nd the candidate(s) (xi; yi) and the corresponding
objective value denoted by Vi for i = 1; :::; 6. Here are the results:
C(1): x = 12=7; y = 30=7; =) outside the constraint set.
C(2): x = 20=7; y = 25=7; =) outside the constraint set.
C(3): x = 9=7; y = 45=7; =) outside the constraint set.
C(4): x = 2; y = 4; V4 = 8:32:
C(5): x = 3; y = 3; V5 = 7:69:
C(6): x = 8=3; y = 11=3; =) outside the constraint set.

Finally, the solution is (x = 2; y = 4); the optimal value is 8:32.

Question 2. (30 points) We also follow the �cookbook� procedure. The
Lagrangean is

L (x; y; �; �1; �2) = (x+ 1) (y + 1) + � (I � px� qy) + �1x+ �2y: (1)

The FOC�s are
Lx = (y + 1)� �p+ �1 = 0 (2)

Ly = (x+ 1)� �q + �2 = 0 (3)
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L� = I � px� qy = 0; � � 0; � (I � px� qy) = 0 (4)

L�1 = x � 0; �1 � 0; �1x = 0 (5)

L�2 = y � 0; �2 � 0; �2y = 0: (6)

It is straightforward to see that � > 0; px + qy = I; x and y cannot both be
zero. Thus, at the optimal point(s), it is either (x = 0; y > 0), or (x > 0; y = 0),
or (x > 0; y > 0). The �nal solutions depend on the parameters p; q; and I,
which are all strictly positive. There are 3 cases regarding p and q: (i) p = q;
(ii) p > q; and (iii) q > p.

Case 1: p = q. First, consider (x = 0; y > 0). The candidate is (x = 0; y =
I=q) and the objective value is (I=q + 1). Second, consider (x > 0; y > 0). The
candidate is (x = I=(2q); y = I=(2q)) and the objective value is (I=(2q) + 1)2.
The latter candidate always yields a strictly higher value than the former. Note
that there�s no need to consider (x > 0; y = 0) (Why?). Thus, for p = q,
(x� = I=(2q); y� = I=(2q)).

Case 2: p > q. First, consider (x = 0; y > 0). The candidate is (x = 0; y =
I=q) and the objective value is (I=q + 1). Second, consider (x > 0; y = 0). The
candidate is (x = I=p; y = 0) and the objective value is (I=p+1). Third, consider
(x > 0; y > 0). The candidate is (x = (I � p + q)=(2p); y = (I + p � q)=(2q))
and the objective value is (I + p+ q)2=(4pq).

As p > q, the second candidate is dominated by the �rst candidate. That
means we only need to compare the �rst and the third. Note that the third
candidate violates x > 0 for I � p� q. Thus for I � p� q, the only candidate
left is the �rst, i.e. (x = 0; y = I=q). For I > p � q, the third candidate
dominates the �rst because

(I + p+ q)2=(4pq) > (I=q + 1)

() I2 + p2 + q2 + 2Ip+ 2Iq + 2pq > 4Ip+ 4pq

() (I2 � Ip+ Iq)� (Ip� p2 + pq) + (Iq � pq + q2) > 0
() I(I � p+ q)� p(I � p+ q) + q(I � p+ q) > 0

() (I � p+ q)2 > 0:

In combination, the results for p > q are

if I � p� q : x� = 0; y� = I=q
if I > p� q : x� = (I � p+ q)=(2p); y� = (I + p� q)=(2q):

Case 3: p < q. By the same token, the results are

if I � q � p : x� = I=p; y� = 0
if I > q � p : x� = (I � p+ q)=(2p); y� = (I + p� q)=(2q):
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Question 3. (20 points) Construct the function

F (z; x; y) =

�
x2 � y3 + z4
x+ y2 � z3

�
:

Note that F is a C1 function de�ned on the open set R3. Consider some (z; x; y)
s.t. F (z; x; y) = [1 1]0. To have x and y as functions in the neighborhood U � R
of z, we need Dx;yF (z; x; y) to be invertible. Speci�cally

Dx;yF (z; x; y) =

�
2x �3y2
1 2y

�
:

The condition is 4xy + 3y2 6= 0, i.e. y 6= 0 and x=y 6= �3=4. By the Im-
plicit Function Theorem, x and y can be solved for as functions of z in the
neighborhood U . Let

DzF (z; x; y) =

�
4z3

�3z2
�
:

Finally, the derivatives are�
@x
@z
@y
@z

�
= � [Dx;yF (z; x; y)]�1DzF (z; x; y):

Question 4. (20 points) Consider a C2 function u : Rn++ ! R s.t.

u (x) =
nX
i=1

vi (xi)

where vi : R++ ! R; i = 1; :::; n. WTS: u is concave i¤ v00i � 0 8i. By
Theorem 7.10 (Sundaram), u is concave i¤ D2u(x) is NSD 8x 2 Rn++. Given
some x 2 Rn++, the Hessian of u is the diagonal matrix

D2u(x) =

2664
v001 (x1) 0 ::: 0
0 v002 (x2) ::: 0
::: ::: ::: :::
0 0 ::: v00n(xn)

3775
n�n

:

In addition, we check for NSD by Theorem 1.63 (Sundaram): (�1)kjA�k j �
0 8k; �, where A�k denotes a squared matrix of order k retrieved from a permu-
tation of D2u(x).

Part 1 ()) WTS: u is concave ) v00i � 0 8i. As u is concave, (�1)1jA�1 j �
0 8�, which means v00i � 0 8i.

Part 2 (() WTS: v00i � 0 8i ) u is concave. As v00i � 0 8i, it is straight-
forward to verify that (�1)kjA�k j � 0 8k; �, which means u is concave. This
completes the proof.
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